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Lecture 4 

GOVERNING PRINCIPLES AND LAWS  
Learning Objectives 

Upon completion of this chapter, the student should be able to: 

 State Pascal’s law. 

 Write force power and force displacement relations. 

 State practical applications of Pascal’s law and evaluate the parameters. 

 Explain the wworking of pressure booster and evaluate the parameters. 

 Explain law of conservation of energy. 

 Derive ccontinuity and Bernoulli’s equation. 

 Modify Bernoulli’s equation to energy equation. 

 State Torricelli’s theorem and workout related problems. 

 State siphon principleand workout problems. 

 

 

1.1 Introduction 
 

Fluid power systems are designed using all the principles learned in fluid mechanics. It is appropriate 

to briefly review these principles before proceeding with our study of the applications. One of 

underlying postulates of fluid mechanics is that, for a particular position within a fluid at rest, the 

pressure is the same in all directions. This follows directly from Pascal’s Law. A second postulate 

states that fluids can support shear forces only when in motion. These two postulates define the 

characteristics of fluid media used to transmit power and control motion. This chapter deals with 

fundamental laws and equations which govern the fluid flow which is essential for the rational design 

of fluid power components and systems. Traditional concept such as continuity, Bernoulli’s equation 

and Torricelli’s theorem are presented after a brief review on mechanics.  

 

1.2 Brief review of Mechanics 
 

Fluid power deals with conversion Hydraulic power to mechanical power. Therefore it is essential to 

understand the concept of energy and power.  

 

1.2.1 Energy 
 

Energy is defined as the ability to perform work. If a force acts on a body and moves the body through 

a specified distance in the direction of its application, a work has been done on the body. The amount 

of this work equals the product of the force and distance where both the force and distance are 

measured in the same direction. Mathematically we can write 

WD = Fd 

where   is the force (N), d is the distance (m) and WD is the work done (J or Nm).In the SI system, a 

joule (J) is the work done when a force of 1 N acts through a distance of 1 m. Since work equals force 

times distance, we have 

1 J = 1 N  1 m = 1 Nm 

Thus, we have  

Energy (J) = F (N) × d (m) 

The transfer of energy is an important consideration in the operation of fluid power systems. Energy 

from a prime mover is transferred to a pump via a rotating motor shaft and couplings. The pump 

converts this mechanical energy into hydraulic energy by increasing the fluid pressure. The 

pressurized fluid does work on hydraulic actuators. An actuator converts the hydraulic energy into 

mechanical energy and moves the external load. Not all the input mechanical energy is converted into 

useful work. There are frictional losses through valves, fittings and other system control components. 
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These losses show up as heat loss that is lost to the atmosphere with the increase in the fluid 

temperature.  

 

1.2.2 Power 

Itis defined as the rate of doing work. Thus, the power input to the hydraulic system is the rate at 

which an actuator delivers energy to the external load. Similarly, the rate at which an actuator delivers 

energy to the external load is equal to the power output of a hydraulic system. The power output is 

determined by the requirements of the external load. 

 

A hydraulic system is used because of its versatility in transferring power. The versatility includes the 

advantages of variable speed, reversibility, overload protection, high power-to-weight ratio and 

immunity to damage under a stalled condition: 

Power
Fd

P
t

   

or      P Fv  

where  is the force (N), v is the velocity (m/s) and P is the power (N m/s or W). In the SI system, 1 

watt (W) of power is the rate at which 1 J of work is done per second: 

Work
Power = 

Time
 

 In SI units we have 

1 Joule
1 W 1 N m / s

s
 

 
Thus, we have  

Work (N m)
Power (W)

Time (s)
  

Balancing the units, we can write 

   Hydraulic power ( ) = Pressure × FlowW  

=  (Np / 2 3m )  (mQ / s)  

=  (N mp Q / s)  (W)p Q   

 

It is usual to express flow rate in liters/minute (LPM) and pressure in bars. To calculate hydraulic 

power using these units, a conversion has to be made. Thus, 

Q (L/min) = Q/60 (L/s)   

   
3

3

L L m

min 60 s 60 10 s

Q Q
Q

    
       

     
 

   
5

2

N
 (bar) 10  

m
p p    

Hydraulic power is  

  

5 3

3 2

l 1 10 m N
   (bar)

min 60 10 s m
Q p

  
    

   
 

  

31 10  (LPM)  (bar)
 (bar)  (W)  (kW)

600 600

Q p
Q p

 
     

 

Thus, hydraulic power (kW) is  

Flow (LPM) × Pressure (bar)

600
 

In the SI metric system, all forms of power are expressed in watt. The pump head Hp in units of 

meters can be related to pump power in units of watt by using p h . So 
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p 3

3

Pump hydraulic power  (W)

N m
   

m s

H

Q


  

   
     

The above equation can also be used to find a motor head where Hp is replaced by Hm. The hydraulic 

power is replaced by the motor hydraulic power and Q represents the motor flow rate. 

The mechanical power output (brake power or torque power) delivered by a hydraulic motor can be 

found by the following equation 

 (N m)  (rad/s)  (N m)  (rpm)
Power (kW)

1000 9550

T T N 
   

WhereT is the torque and   or N is the angular speed. 

 

 

1.3 Pascal’s Law 
Pascal’s law states that the pressure exerted on a confined fluid is transmitted undiminished in all 

directions and acts with equal force on equal areas and at right angles to the containing surfaces. In 

Fig. 1.1, a force is being applied to a piston, which in turn exerts a pressure on the confined fluid. The 

pressure is equal everywhere and acts at right angles to the containing surfaces. Pressure is defined as 

the force acting per unit area and is expressed as  

Pressure
F

A


 
where F is the force acting on the piston, A is the area of the piston and p is the pressure on the fluid. 

 
Figure 1.1 Illustration of Pascal’s law 

 

1.3.1 Multiplication of Force 

The most useful feature of fluid power is the ease with which it is able to multiply force. This is 

accomplished by using an output piston that is larger than the input piston. Such a system is shown in 

Fig. 1.2. 

 

 

 

 

F 

Confined fluid 
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Figure 1.2 Multiplication of force 

 

This system consists of an input cylinder on the left and an output cylinder on the right that is filled 

with oil. When the input force is Fin on the input piston, the pressure in the system is given by  

    

out

out

F
P

A
  

    
out outF PA 

in

out

in

F
A

A
 out

in

in

A
F

A
  

 Here to obtain the output force, the input force is multiplied by a factor that is equal to the ratio of the 

output piston area to the input piston area. If the output piston area is x times the input piston area, 

then the output force is x times the input force. Generally, the cross-sectional area of the piston is 

circular. The area is given by 
2 / 4A d  

Hence, the above equation can be written as  

    

2

out

out in2

in

d
F F

d
  

    
2

out out

2

in in

F d

F d
   

The conservation of energy is very fundamental principle. Itstates that energy can neither be created 

nor destroyed. At first sight, multiplication of force as depicted in Fig.1.2 may give the impression 

that something small is turned into something big. But this is wrong, since the large piston on the right 

is only moved by the fluid displaced by the small piston on left. Therefore, what has been gained in 

force must be sacrificed in piston travel displacement. Now we shall mathematically derive force 

displacement relation and force power relation. 

 

1. Force displacement relation: A hydraulic oil is assumed to be incompressible; hence, the 

volume displaced by the piston is equal to the volume displaced at the output piston: 

in outV V  
Since the volume of a cylinder equals the product of its cross-sectional area and its height, we 

have  

   in in out outA S A S  

 

whereSin is the downward displacement of the input piston and Soutis the upward displacement 

of the output piston: 

    

outin

out in

AS

S A
  

Comparing    

SinVinXin 

Fout 

 

Fin 

Input piston   Output piston   

 

Aout Ain 

SoutVoutXout 
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out out in

in in out

F A S

F A S
    (1.1) 

 

2. Force power relation: A hydraulic oil is assumed to be incompressible; hence, the quantity of oil 

displaced by the input piston is equal to the quantity of oil gained and displaced at the output 

piston: 

Flow rate is the product of area and volume of fluid displaced in a specified time 

 

   in outQ Q  

   

in in out out

out in

in out

A V A V

A V

A V


 


    (1.2) 

     

Comparing Equations. (1.1) and (1.2) we get  

     

      

    out outin in

in out in out

A FV S

A V F S
    

From the above equation, we get 

in in out outF S F S  

or    (Work done)in = (Work done)out 

We know that   
Power = Force x Velocity  

     
in in out outF v F v   

or            (Power)in = (Power)out 

 

 

Example 1.1 

An input cylinder with a diameter of 30 mm is connected to an output cylinder with a diameter of 80 

mm (Fig. 1.3). A force of 1000 N is applied to the input cylinder.  

(a) What is the output force?  

(b) How far do we need to move the input cylinder to move the output cylinder 100 mm? 

 
Figure 1.3 

 

Solution: Since the volume of a cylinder equals the product of its cross-sectional area and its height, 

we have  

Sin VinXin 

 

Fout 

 

Fin 

 

Input piston  

 
Output piston 

Vout,Xout 

 

SoutVoutXout 

 

Aout 

 

Ain 
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in in out out A X A X  

whereXin is the downward movement of the input piston and Xout is the upward movement of the 

output piston. Hence we get 

    
out in

in out

 
 

X A

X A
  

The piston stroke ratio 
out in/  X X equals the piston area ratio in out/A A . For a piston area of 10, the 

output force Fout increases by a factor of 10, but the output motion decreases by a factor of 10. 

Thus, the output force is greater than the input force, but the output movement is less than the input 

force and the output movement is less than the input movement. Hence, we can write by combining 

equations  

   in in out out A X A X and out in

in out

 
 

X A

X A
  

that 

     
out in

in out

   
F X

F X
  

     in out W W   

Hence, the input work equals the output work. 

Given Fin = 1000 N, A1 = 0.7854 × 30
2
 mm

2 
and A2 = 0.7854 × 80

2
 mm

2
, Sout = 1000 mm.  

To calculate SinandF2. 

(a) Force on the large piston F2:By Pascal’s law, we have  

    

1 1

2 2

F A

F A
  

    22 1
2 2

1

1000N
0.7854 80

0.7854 30

A F
F

A


    


 

    
2 7111.1 NF   

 

(b) Distance moved by the large piston Sout:We also know by the conversation of 

energy that 

    out1

2 inS

SF

F
  

    out 2

in

1

1000 7111.1

1000

S F
S

F

 
    

    
in 7111.11  mmS   

 

Example 1.2  

A force of P = 850 N is applied to the smaller cylinder of a hydraulic jack (Fig.1.4). The area a of the 

small piston is 15 cm
2
 and the area A of the larger piston is 150 cm

2
. What load W can be lifted on the 

larger piston (a) if the pistons are at the same level, (b) if the large piston is 0.75 m below the smaller 

one? The mass density ρ of the liquid in the jack is 103 kg /m
3
. 

 

Solution: A diagram of a hydraulic jack is shown in Fig. 1.4.A force F is applied to the piston of the 

small cylinder which forces oil or water into the large cylinder thus raising the piston supporting the 

load W. The force F acting on the area a produces a pressure p1  that is transmitted equally in all 

directions through the liquid. If the pistons are at the same level, the pressure p2 acting on the larger 

piston must equal p1as per Pascal’s law 
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(a) 

 
Figure 1.4 (a)  Pistons are at same level. (b) Pistons are at different level. 

We know that  

1    
F

p
a

 and
2    

W
p

A
  

 

If 
1 2  , p p  a small force can raise a larger load W. The jack has a mechanical advantage of A/a. 

 

(a) Now 
2 2   850 N,    1  5 /1000  m ,    1  50 /10000 mP a A   . Using Pascal’s law we can write  

 

   
1 2p p

F W

a A



 
 

      
F A

W
a


 

850 1.5
      8500 N

0.15


   

Now 

8500
Mass lifted        868 kg

9.81

W

g
    

(b) If the larger piston is a distance h below the smaller, the pressure p2 is greater than p1, due to 

the head h, by an amount g where is the mass density of the liquid: 

F 

Small piston 

Vout, Xout 

 

d2 
Area, a 

d1 

Large piston 

Vout, Xout 

 

Area, A 

 

W 

0.75 

m 

 

F 

Small piston 

VoutXout 
Large piston 

VoutXout 
d2 

Area, A Area, a 

d1 

 

W 
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  2 1    p p gh   

Now   

 

4 2

1 4

3

 850
     56.7  1  0  N / m

15 10

  1  03 kg / m

F
p

a




   





 

    0.75 mh  
So 

  
2  56.7  1  04   (103   9.81)   0.75p       

  2        57.44  1  04 N / m 
 

Now 

 4

2             57.44  1  04  1  50  1  0    8650 NW p A        

Therefore   

 Mass lifted       883 kg
W

g
   

Example 1.3  

Two hydraulic cylinders are connected at their piston ends (cap ends rather than rod ends) by a single 

pipe (Fig. 1.5). Cylinder A has a diameter of 50 mm and cylinder B has a diameter of 100 mm. A 

retraction force of 2222 N is applied to the piston rod of cylinder A. Determine the following: 

 

(a) Pressure at cylinder A. 

(b) Pressure at cylinder B. 

(c) Pressure in the connection pipe. 

(d) Output force of cylinder B. 

 

 
 

Figure 1.5 

 

Area of the piston of cylinder A is 

2 2(50) 1963.5 mm  
4


  

Area of the piston of cylinder B is 

2 2(100) 7853.8 mm  
4


  

 

(a) Pressure in cylinder A is given by 

F2 

Cylinder A, 

VoutXout 
Cylinder B, VoutXout 

 
d2 

A2 A1 

d1 

F1 = 2222 N 
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2

Force  2222  N
1.132  1.132 MPa

Area 1963.5 mm
    

(b)  By Pascal’s law, pressure in cylinder A = pressure in cylinder B = 1.132 MPa  

(c) By Pascal’s law, pressure in cylinder A = pressure in cylinder B = pressure in the pipe line 

= 1.132 MPa 

(d) Force on the large piston (cylinder B) F2: By Pascal’s law, we have  

    1 1

2 2

F A

F A
  

   22 1
2 2

1

2222 N
7853.8 mm 8888 N

1963.5 mm

A F
F

A


      

 
 

Example 1.4  

A pump delivers oil to a cylindrical storage tank, as shown in Fig. 1.6. A faulty pressure switch, 

which controls the electric motor driving the pump, allows the pump to fill the tank completely. This 

causes the pressure p1 near the base of the tank to build to 103.4 kPa.  

(a) What force is exerted on the top of the tank?  

(b) What does the pressure difference between the tank top and point 1 say about Pascal’s law?  

(c) What must be true about the magnitude of system pressure if the changes in pressure due to 

elevation changes can be ignored in a fluid power system (assume the specific gravity of oil to be 

0.9). 

 
Figure 1.6  

 

(a) We know that 

3

( )

N
900 9.81    (6.096 m)

m

53821.6 Pa

53.822 kPa

p H  

  





 

 

Thus,  

top of tank 103.4 53.82 49.58 kPaF     

Pump 

3048  

6096  

All dimensions in mm 

p1 

9144  
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(b) Now 

F = Pressure × Area  

249.58 1000 (3.048)
4

361755N

=361.76 kN


  

  

 

Pascal’s law states that pressure in a static body of fluid is transmitted equally only at the same 

elevation level. Pressure increases with depth and vice versa in accordance with the following 

equation: ( )p H   . 

 

(c) Changes in pressure due to elevation changes can be ignored in a fluid power system as long as 

they are small compared to the magnitude of the system pressure produced at the pump discharge 

port. 

 

Example 1.5 

The hydraulic jack, shown in Fig. 1.7, is filled with oil. The large and small pistons have diameters of 

75 and 25 mm, respectively. What force on the handle is required to support a load of 8896 N? If the 

force moves down by 125 mm, how far is the weight lifted? 

 
 

 

Figure 1.7 

Solution: The relation for the lever force system gives 

    1400 25F F    

    1

16

F
F   

Now since the oil pressure must remain the same everywhere, we have
1 2p p . Therefore  

  

1 2

1 2

F F

A A
  

25 mm 375 mm 

2 

1 

Load 
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   1

2 2

8896

0.025 / 4 0.075 / 4

F

 
 

 
 

 

  
1 988.44 NF   

From the relation obtained above, we get 

1  
16

F
F 

988.44

16
 61.78 N  

The force moves by 125 mm. The force displacement diagram is shown in Fig. 1.8 

 

 
 

Figure 1.8Force displacement diagram 

From Fig. 1.8 we have 

 

    

RS RP

QT PQ
  

    
1

RS RP

PQS
   

   
1

RS PQ 150 25
9.375 mm

RP 400
S

 
     

Now     

    
1 1 2 2A S A S  

   
2 2

2

25 75
9.375

4 4
S        

   
2

1
9.375 1 mm

9
S     

 

Hence, 150 mm stroke length of lever moves the load of 8896 N by only 1 mm. In other words, 

mechanical advantage is obtained at the expense of distance traveled by the load. 

 

 

 

T 

Q 
P 

25 mm 375 mm 

Load 

375 mm 25 mm 

S 

R 

S1 
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Example 1.6 

In the hydraulic device shown in Fig.1.9, calculate the output torque T2, if the input torque T1 =10 N-

cm. Use the following data: radius R1 = 2 cm, diameter d1 = 8 cm, radius R2 = 4 cm, diameter d2 = 24 

cm. 

 

 
Figure 1.9  

 

 

Solution: We can use Pascal’s law and write  

    1 2p p  

    1 1

2 2

F A

F A
   

    1 2

2 2

1 2

F F

d d
   

 

Since torqueT F R  which implies / ,F T R  we can also write 

    1 2

2 2

1 1 2 2

T T

R d R d
  

 

    
2

1 2 2
2 2

1 1

T R d
T

R d


   

    
2

2 2

10 4 24
180 N cm

2 8
T

 
  


 

Alternate method: We know that  

Torque Force  Radius of the gearT    

Consider gear 1. We have   

1 1 1T F R  

    1
1

1

10
5 N

2

T
F

R
     

Now     

    1
1

1

p
F

A
  

whereA1 is the area of the horizontal piston given by 

 

2d
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2 2 2 ( )  (8 ) 49.84 cm
4 4

d
 

   

So 

    2

1

5
0.100 N / cm

49.84
p    

 

According to Pascal’s law, 2

1 2 0.100 N / cmp p  . Here  

     2
2

2

p
F

A
  

whereA2 is the area of the horizontal piston given by 

2 2 2 ( )  (24 ) 452.16 cm
4 4

d
 

   

So 

    2
2

2

p
F

A
  

   20.100
452.16

F
   

2 45.216 NF   

Now     

    
2 2 2 45.216 4 180.8 N cm T F R     

 

Example 1.7 

A hydraulic system has 380 L reservoir mounted above the pump to produce a positive pressure 

(above atmospheric) at the pump inlet, as shown in Fig. 1.10.  The purpose of the positive pressure is 

to prevent the pump from cavitating, when operating, especially at start up. If the pressure at the pump 

inlet is to be 0.35 bar prior to turning the pump ON and the oil has a specific gravity of 0.9, what 

should the oil level be above the pump inlet? 

 
Figure 1.10 

 

 

We know that 

    oil oil oilp H  

    
5

oil

oil

oil

2

3

N/0.35 10
3.96 m

0.90

m

N/9797  m

p
H




   


 

Thus, oil level should be 3.96 m above the pump inlet. 

 

 

Example 1.8 

Filter 

0.36 bar 

Pump 

Vent 

h 
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For the hydraulic pressure shown in Fig. 1.11, what would be the pressure at the pump inlet if the 

reservoir were located below the pump so that the oil level would be 1.22 m below the pump inlet? 

The specific gravity of oil is 0.90. Ignore frictional losses and changes in kinetic energy on the 

pressure at the pump inlet. Would this increase or decrease the chances for having pump cavitation? If 

yes, why? 

 
Figure 1.11 

 

 

Solution: We know that 

oil oil oilp H 
 

3

N
0.90 9797  1.22 m 10757 Pa

m
       

= −0.10757 bar (gauge) 

Frictional losses and changes in kinetic energy would cause the pressure at the pump inlet to increase 

negatively (greater suction pressure) because pressure energy decreases as per Bernoulli’s equation. 

This would increase the chances for having the pump cavitation because the pump inlet pressure more 

closely approaches the vapor pressure of the fluid (usually about 0.34 bar suction) or −0.34 bar 

(gauge), allowing for the formation and collapse of vapor bubbles 

 

 

Example 1.9 

A hydraulic cylinder is to compress a body down to bale size in 10 s. The operation requires a 3 m 

stroke and a 40000 N force. If a 10 MPa pump has been selected, assuming the cylinder to be 100% 

efficient, find 

(a) The required piston area. 

(b) The necessary pump flow rate. 

(c) The hydraulic power delivered to the cylinder. 

(d) The output power delivered to the load. 

(e) Also solve parts (a)–(d) assuming a 400 N friction force and a leakage of 1 LPM. What is the 

efficiency of the cylinder with the given friction force and leakage? 

 

Solution: 

 

(a) Since the fluid pressure is undiminished, we have 1 2 10 MPap p  . Now 

   2
2

2

p
F

A


22
2 6

2

40000
0.004 m

10 10p

F
A   


 

which is the required piston area. 

(b) Stroke length     3 ml  , time for stroke   10 st , piston area 
2

2  0.004 mA  . Flow rate is 

Q 

Pump 
p 

Filter 

Vent 
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   4 32 0.004 3
       12 10 (m /s) 72 LPM

10

A l
Q

t


      

 

(c) Power delivered to the cylinder 

6 4

Power Pressure Flow rate

(10 10 ) (12 10 )

12000 W 12 kW



 

   

 

 

(d) Power delivered to load is 

 

 
40000 3

Power 12000 W 12 kW
10

F l

t

 
     

Since efficiency is assumed to be 100%, both powers are the same. 

 

(e) With a friction force of 400 N f  and 1   LPM  leakage, piston area is   
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2 6

2

40000 400
0.00404 m

10 10

F f
A

p

 
   


 

Now pump flow rate is     

    
2

4 3

0.00404 3
    

10

12.12 10 m / s 72.72 LPM

A l
Q

t


 
  

  

 

So 

 

4 3

Total flow Leakage

72.72 1

73.72 LPM

12.287 10 m / s

Q



 

 



 

 

 

Power delivered to the cylinder is given by 

p Q  = 6 4(10 10 ) (12.287 10 )    

      1  2287 W 12.287 kW   

Power delivered to the load is 

 
40000 3

Power 12000 W 12 kW
10

F l

t

 
     

 

It will remain the same as without losses. The efficiency of the cylinder  

Power delivered  to load

Power delivered to cylinder

12
100 97.66%

12.287

 

  

 

Example 1.10 

An automobile lift raises a 15600 N car 2.13 m above the ground floor level. If the hydraulic cylinder 

contains a piston of diameter 20.32 cm and a rod of diameter 10.16 cm, determine the  

(a) Work necessary to lift the car. 

(b) Required pressure. 

(c) Power if the lift raises the car in 10 s. 

(d) Descending speed of the lift for 0.000629 m
3
/s flow rate. 

(f) Flow rate for the auto to descend in 10 s. 
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Solution: 

(a) We have 

 

Work necessary to lift the car = Force × Distance  

    = 15600 × 2.13 m = 33200 N m 

(b) We have 

 
2 2

2(0.2032)  m
 Piston area 0.0324 m

4


   

So required pressure is  

  
2

Force 15600
 Pressure  

Area 0.0324

481000N / m 481 kPa

 

 

 

 

(c) We have 

Work done 33200
Power  

Time 10

3320N  m / s 3320 W 3.32 kW

 

  

 

 

(d) Q = 0.000629 m
3
/s. 

  
2 2

2(0.2032) (0.1016)
Annulus area 0.0243 m

4

 
   

So  

 
Flow rate 0.000629

 Decending speed of the lift   0.0259 m / s
Annulus area 0.0243

    

 

(e) Flow rate for the auto to descend in 10 s is 

 
3

Distance 
Flow rate Annulus area   

Time

2.13
0.0243 0.00518 m / s

10

 

  

 

1.3.2 Practical Applications of Pascal’s Law 

 

The practical applications of Pascal’s law are numerous. In this section, two applications of Pascal’s 

law are presented: (a) The hand-operated hydraulic jack and (b) the air-to-hydraulic pressure booster. 

 

1.3.2.1 Hand-Operated Hydraulic Jack 

This system uses a piston-type hand pump to power a hydraulic load cylinder for lifting loads, as 

illustrated in Fig. 1.12. The operation is as follows: 

 

1. A hand force is applied at point A of handle ABC which is pivoted at point C. The piston rod 

of the pump cylinder is pinned to the input handle of the pump piston at point B. 

2. The pump cylinder contains a small-diameter piston that is free to move up and down. The 

piston and rod are rigidly connected together. When the handle is pulled up, the piston rises 

and creates a vacuum in the space below it. As a result, the atmospheric pressure forces the oil 

to leave the oil tank and flow through check valve 1 to fill the void created below the pump 

piston. This is the suction process.  

3. A check valve allows flow to pass in only one direction, as indicated by the arrow. When the 

handle is pushed down, oil is ejected from the small-diameter pump cylinder and it flows 

through check valve 2 and enters the bottom end of the large-diameter load cylinder.  
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4. The load cylinder is similar in construction to the pump cylinder and contains a piston 

connected to a rod. Pressure builds up below the load piston and equals the pressure generated 

by the pump piston. The pressure generated by the pump piston equals the force applied to the 

pump piston rod divided by the area of the pump piston.  

5. The load that can be lifted equals the product of the pressure and the area of the load piston. 

Also, each time when the input handle is cycled up and down, a specified volume of oil is 

ejected from the pump to raise the load cylinder a given distance.  

6. The bleed valve is a hand-operated valve, which, when opened, allows the load to be lowered 

by bleeding oil from the load cylinder back to the oil tank. 

 

 
 

Figure 1.12 Application of Pascal’s law: Hand-operated hydraulic jack 

 

1.3.2.2 Air-to-Hydraulic Pressure Booster 

 

This device is used for converting shop air into higher hydraulic pressure needed for operating 

hydraulic cylinders requiring small to medium volumes of higher pressure oil. It consists of a cylinder 

containing a large-diameter air piston driving a small-diameter hydraulic piston that is actually a long 

rod connected to the piston. Any shop equipped with an airline can obtain smooth, efficient hydraulic 

power from an air-to-hydraulic pressure booster hooked into the air line. The alternative would be a 

complete hydraulic system including expensive pumps and high-pressure valves. Other benefits 

include space savings and low operating and maintenance costs. 

 

Figure 1.13 shows an application where an air-to-hydraulic pressure booster supplies high-pressure oil 

to a hydraulic cylinder whose short stroke piston is used to clamp a workpiece to a machine tool table. 

Since shop air pressure normally operates at 100 psi, a pneumatically operated clamp would require 

an excessively large cylinder to rigidly hold the workpiece while it is being machined. 

 

Atmospheric 

pressure 

Load 

A B 

Check valve 1 

Check valve 2 

50 mm 150 mm 

Hand force 

Handle 

Pump piston 

Bleed valve 

Oil tank 

C 

Load cylinder 
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Figure 1.13Application of Pascal’s law: Air-to-hydraulic pressure booster 

The air-to-hydraulic pressure booster operates as follows. Let us assume that the air piston has 10 cm
2 

area and is subjected to a 10 bar air pressure. This produces a 1000 N force on the booster’s hydraulic 

piston. Thus, if the area of the booster’s hydraulic piston is 1 cm
2
, the hydraulic oil pressure is 100 

bar. As per Pascal’s law, this produces 100 bar oil at the short stroke piston of the hydraulic clamping 

cylinder mounted on the machine tool table. 

 

The pressure ratio of an air-to-hydraulic pressure booster can be found by using the following 

equation:

 Output oil pressure
Pressure ratio

Input oil pressure

Area of air piston

Area of hydraulic piston





 

 

Substituting into the above equation for the earlier mentioned pressure booster, we have 
2

2

10000 kPa 10 cm
Pressure ratio

1000 kPa 1 cm
   

For a clamping cylinder piston area of 0.5 cm
2
, the clamping force equals 1000 N/cm

2
 × 0.5 cm

2
 or 

500 N. To provide the same clamping force of 500 N without booster requires a clamping cylinder 

piston area of 5 cm
2
, assuming 10 bar air pressure. Air-to-hydraulic pressure boosters are available in 

a wide range of pressure ratios and can provide hydraulic pressures up to 1000 bar using 

approximately 7 bar shop air. 

 

Example 1.11 

An operator makes 15 complete cycles in 15 s interval using the hand pump shown in Fig. 1.14. Each 

complete cycle consists of two pump strokes (intake and power). The pump has a piston of diameter 

30 mm and the load cylinder has a piston of diameter 150 mm. The average hand force is 100 N 

during each power stroke. 

Oil 

Machine tool table 

Work 

piece 

Clamp 

Air piston 

Air valve 

Inlet air supply 

Air 

Retractable shortstroke piston 
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(a) How much load can be lifted? 

(b) How many cycles are required to lift the load by 500 mm, assuming no oil leakage? The pump 

piston has 20 mm stroke. 

(c) What is the output power assuming 80% efficiency? 

 

 

 
 

Figure 1.14 

 

Solution:Given:pump diameter     30 mmd  , load cylinder diameter     1  50 mmD , hand force 

    1  00 Nf  , number of cycles 1  5n   strokes/s, pump piston force  

1

100 550
1  100 N

50
F


   

(a) Load capacity: Now since the pressure remains undiminished throughout, we have 
1 2.p p

Therefore,      

    1 2

1 2

F F

A A
  

    
2 2

2 12 2

/ 4 150
    1  100 27500 N 27.5 kN

/ 4 30

D
F F

d




       

 

(b) Number of cycles:Stroke length l  = 20 mm. Let the number of strokes be N.Then assuming no 

leakage, we get 

1 2Q Q  

where 

 

  = Total volume of fluid displaced by  pump piston 

= (Area  Stroke) Number of strokes =       
  = Flow rate of load cylinder= (Area   Stroke of load cylinder)  

     =       

So we get    

1 2 500 N Al A       
2

2

150
  500 625

20 30
N   


 

Hence, the number of cycles required is 625. 

Load 

A B 

Check valve 1 

Check valve 2 

50 mm 500 

mm 

Hand force 

Handle 

Pump 

piston 

Bleed valve 

Oil 

tankTan

k 

C 

Load 

cylinder 
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(c) Output power: 

Input power = 
1  F l n   

Output power =
1    0.8 1100 0.02 15 264 WF l n         

 

Example 1.12 

For the pressure booster of Fig. 1.15, the following data are given: 

Inlet oil pressure (p1) = 1 MPa 

Air piston area (A1) = 0.02 m
2
 

Oil piston area (A2) = 0.001 m
2
 

Load carrying capacity = 300000 N 

Find the load required on load piston area A3. 

 
 

 

Figure 1.15 

 

Solution:We know that 

   
2

1 1

2 2

2

1 MPa   0.02 m
20 MPa

0.001 m

p A
p

A


    

Also 
3 2 20 MPap p  . So 

   
2

3 6 2

3

300000 N
0.015 m

20 10  N / m

F
A

p
  


 

 

1.4 Conservation of Energy 

 

The first law of thermodynamics states that energy can neither be created nor be destroyed. Moreover, 

all forms of energy are equivalent. The various forms of energy present in fluid flow are briefly 

discussed. The total energy includes potential energy due to elevation and pressure and also kinetic 

energy due to velocity. Let us discuss all these in detail.  

 

1. Kinetic energy of a flowing fluid:A body of mass m moving with velocity vpossesses a kinetic 

energy (KE), that is,  

Hydraulic 

cylinder 

F = Load 

Air (p1 = air intake pressure)  

Oil 

Air piston 

Air valve 

Inlet air supply 

Load piston 

p2 = Oil pressure 

p3 
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2 

KE
2  

mv
  

 

Thus, if a fluid were flowing with all particles moving at the same velocity, its kinetic energy would 

also be 2(1/ 2)( ) ;m v  this can be written as 

    

2 2
2

1 1
[( )Volume]

KE 2 2

Weight ( )Volume ( )Volume 2 

mv v
v

g



 
    

 

whereg is the acceleration due to gravity. In SI units,v
2
/2g  is expressed as Nm/N = m.. 

 

2. Potential energy due to elevation (z):  Consider a unit weight of fluid as shown in Fig. 1.16.The 

potential energy of a particle of a fluid depends on its elevation above any arbitrary plane. We are 

usually interested only in the differences of elevation, and therefore the location of the datum plane is 

determined solely by consideration of convenience. A fluid particle of weight W situated at a distance 

Z above datum possesses a potential energy Wz. Thus, in SI units, its potential energy per unit weight 

is expressed asNm/N = m. 

 
Figure 1.16Potential energy due to elevation 

3. Potential energy due to pressure (PE): This term represents the energy possessed by a fluid per 

unit weight of fluid by virtue of the pressure under which the fluid exists: 

    

    PE
p


  

where is the specific weight of the fluid. PE has the unit of meter. The total energy possessed by the 

weight of fluid remains constant (unless energy is added to the fluid via pumps or removed from the 

fluid via hydraulic motors or friction) as the weight W flows through a pipeline of a hydraulic system. 

Mathematically, we have 

     
2

Total       
2 

p v
E z

g
    

Energy can be changed from one form to another. For example, the chunk of fluid may lose elevation 

as it flows through a hydraulic system and thus has less potential energy. This, however, would result 

in an equal increase in either the fluid’s pressure energy or its kinetic energy. The energy equation 

takes into account the fact that energy is added to the fluid via pumps and that energy is removed from 

the fluid via hydraulic motors and friction as the fluid flows through actual hydraulic systems. 

 

 

 

z 

p p 

p 

p 

Datum 

W = unit weight of fluid 
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Example 1.13 

Oil with specific gravity 0.9 enters a tee, as shown in Fig. 1.18, with velocity v1 =5 m/s. The diameter 

at section 1 is 10 cm, the diameter at section 2 is 7 cm and the diameter at section 3 is 6 cm. If equal 

flow rates are to occur at sections 2 and 3, find the velocities v2 and v3. 

 

 
Figure 1.18  

 

 

Solution: Assuming no leakage  

1 2 3Q Q Q   

Also,       

   2 3 1 1 1

1 1

2 2
Q Q Q A v     

 
2 2

3 31
1

1 1 0.1
5 19.63 10 m /s

2 4 2 4

d
v

  
         

Therefore,   

    
3

2
2 2

2

19.63 10
    5.1  m / s

0.07 / 4

Q
v

A 


  


 

    

3

3
3 2

3

19.63 10
     6.942 m / s

0.06 / 4

Q
v

A 


  


 

 

 

Example 1.14 

A double-rod cylinder is one in which a rod extends out of the cylinder at both ends (Fig. 1.19). Such 

a cylinder with a piston of diameter 75 mm and a rod of diameter 50 mm cycles through 254 mm 

stroke at 60 cycles/min. What LPM size pump is required?  

 

 
Figure 1.19 

 

 

Solution: The annulus area is 

Piston 
Extension stroke 

Barrel 

Rod 

Port Port 

Retractionstroke 

Tee 

1 

2 

3 

Q 
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2 2

Annulus

(75 50 )
 

4
A

 
  2454 mm

2 

Volume of oil displaced per minute (m
3
/s) is 

Area × Stroke length × No. of cycles per second 

Now  

   

2 2 2
6 2

3

(75 50 ) mm 254 60
10  m 2  (m)  (s)

4 1000 60

0.001296 m /s 77.8 LPM

Q
   

     
 

 

 

We can select 80 LPM pump. 

 

Example 1.15  

A cylinder with a piston of diameter 8 cm and a rod of diameter 3 cm receives fluid at 30 LPM. If the 

cylinder has a stroke of 35 cm, what is the maximum cycle rate that can be accomplished? 

 

Solution:We know that 

 

Volume of oil displaced per minute (m
3
/min) = Area × Stroke length × No. of cycles per 

minute 

So

 
2 2 2 2 2

3

(0.08 )m 35 (0.08 0.03 ) m 35
    (m)    (cycles / min)  (m) (cycles / min)

4 100 4 100

0.03m / min

Q N N
     

        
   



 

 
0.030 0.00176 0.0015    

 9.2 cycles/min

N

N

   

 
 

 

 

 

Example 1.16  

A hydraulic pump delivers a fluid at 50 LPM and 10000 kPa. How much hydraulic power does the 

pump produce? 

 

 

Solution: We have 

 3

3

350
50 LPM 0.833 10

60 10
m /sQ    


 

Now 

1 L = 1000 cc = 1000 × 6 310  m   = 3 310 m  
So 

Power (kW) = p (kPa) ×Q (m
3
/s)  

        = 10000 × 30.833  1  0  
= 8.33 kW  = 8330 W 
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1.7 The Energy Equation 

The Bernoulli equation discussed above can be modified to account for fractional losses (HL) between 

stations 1 and 2.  Here HLrepresents the energy loss due to friction of 1 kg of fluid  moving from 

station 1 to station 2. As discussed earlier,    represents the energy head put into the flow by the 

pump. If there exists a hydraulic motor or turbine between stations 1 and 2, then it removes energy 

from the fluid. If Hm (motor head) represents the energy per kg of fluid removed by a hydraulic motor, 

the modified Bernoulli equation (also called the energy equation) is stated as follows for a fluid 

flowing in a pipeline from station 1 to station 2: The total energy possessed by 1 kg of fluid at station 

1 plus the energy added to it by a pump minus the energy removed from it by a hydraulic motor minus 

the energy it loses due to friction equals the total energy possessed by 1 kg of fluid when it arrives at 

station 2. The energy equation is as follows, where each term represents a head and thus has the unit 

of length: 

 

 
2 2

1 1 2 2

1 m 2p L
2 2

p v p v
H H H z

g g
z

 
         

 

 

1.9 Elements of Hydraulic Systems and the Corresponding Bernoulli’s Equation  

 

The main elements of hydraulic systems are pump, motor, pipes, valves and fittings. Let us write the 

energy flow from point1 to point 2 as shown in Fig. 1.22.After the fluid leaves point 1, it enters the 

pump where energy is added. A prime mover, such as an electric motor, drives the pump and the 

impeller of the pump transfers the energy to the fluid. Then the fluid flows through a piping system 

composed of a valve, elbows and the lengths of pipe in which energy is dissipated from the fluid and 

is lost. Before reaching point 2, the fluid flows through a fluid motor that removes some of the energy 

to drive an external device. The general energy equation accounts for all these energies. 

In a particular problem, it is possible that not all of the terms in the general energy equation are 

required. For example, if there is no mechanical device between the sections of interest, the terms Hp 

and Hmwill be zero and can be left out of the equation. If energy losses are so small that they can be 

neglected, the term HL can be left out. If both these conditions exist, it can be seen that the energy 

equation reduces to Bernoulli’s equation. 

 

 
Figure1.22Elements of a hydraulic system 

 

1 

(Energy 

delivered) 

Pump 

Fitting 

Fitting 

Hp 

Hydraulic motor 

Valve 

Hm 

Flow out 

Flow 

in 
(Energy received) 

Frictional 

losses 

2 



25 

 

Example 1.17  

(a) Calculate the work required for a pump to pump water from a well to ground level 125 m above 

the bottom of the well (see Fig.1.23). At the inlet to the pump, the pressure is 96.5 kPa, and at the 

system outlet, it is 103.4 kPa. Assume the constant pipe diameter. Use  = 9810 N/m
3
, and assume it 

to be constant. Neglect any flow losses in the system. 

 

 
 

Figure 1.23 

 

Given
1 0,z  2 125 m,z    1 96.5kPa,p    2 103.4kPa,p    L 0,H  1 2.D D FindHp. 

Assumptions: Steady incompressible flow, no losses 

Basic equations:  

Continuity: A1v1 = A2v2 

Energy equation: 
2 2

1 1 2 2
1 p 2 L 

2 2

p v p v
z H z H

g g 
        

 

(b) Solve the above problem if there is friction in the system whose total head loss equals 12.5 m. 

Given
1 0,z  2 125 m,z    1 96.5kPa,p    2 103.4kPa,p    L 12.5m,H   1 2.D D FindHp. 

Assumptions: Steady incompressible flow, no losses 

Basic equations:  

Continuity: A1v1 = A2v2 

Energy equation: 
2 2

1 1 2 2
1 p 2 L 

2 2

p v p v
z H z H

g g 
        

 

Solution: 

 

(a) Write the energy equation 

   

2 2

1 1 2 2
1 p 2 L 

2 2

p v p v
z H z H

g g 
        

Note that v1 =v2 and HL = 0.Thus, 

   2 1
p 2 1     

p p
H z z

 
     

With z1 = 0we get
 

   
p 3 3

103.4 kPa 96.5 kPa
    125 125.7 m
9.81 kN / m 9.81 kN / m

H      

(b) Write the energy equation 

  
2 2

1 1 2 2
1 p 2 L 

2 2

p v p v
z H z H

g g 
      

 

1 

2 

 125 m 

z2 

z1 =0 

p2 =103.4 kPa 

p1 =96.5 kPa 



26 

 

As before, v1 =v2 but HL = 12.5 m.Therefore,  

  2 1
p 2 1 L     

p p
H z z H

 
      

With z1 = 0 we get 

 p 3 3

103.4 kPa 96.5 kPa
    137.5 138.2 m
9.81 kN / m 9.81 kN / m

H      

 
 

Note that the pump is required to overcome the additional friction head loss, and for the same flow, 

this requires more pump work. The additional pump work is equal to the head loss. 

 

Example 1.18  

A hydraulic turbine is connected as shown in Fig. 1.24. How much power will it develop? Use 1000 

kg/ m
3
 for the density of water. Neglect the flow losses in the system. 

 

 
 

Figure 1.24 

Given
1 30m,z  2 0,z  1 1000kPa,p     2 500kPa,p     L 0,H  

3

1 2 100mm, =0.01m /s.D D Q   

Find turbine power. 
Assumptions: Steady incompressible flow, no losses 

Basic equations:  

Continuity: A1v1 = A2v2 

Energy: 
2 2

1 1 2 2
1 p 2 L 

2 2

p v p v
z H z H

g g 
        

Power: T            P H Q     

Solution: Again let us write the energy equation, but this time for a turbine: 

   

2 2

1 1 2 2
1 p 2 L 

2 2

p v p v
z H z H

g g 
        

Since there are no losses in the pipe and the pipe diameter is constant, 1 2  ,v v
2 10, 30 m.z z 

Therefore, TH  is found as 

    1 2
T 1 2

 
( )

p p
H z z




    

Using the data given we get 

(p2 =500 kPa) 

Pipe 100mm  

throughout 

1 

30 m 

Datum 

2 

(p1 =1000 kPa) 

Q = 0.01 m3/s 
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   T

(1000  500)1000
(30 0)  80.97 m

1000  9.81
H


   


 

Horsepower is given by 

   

THorsepower            

80.97   0.01  1  000    9.81

 7941  W 7.941 kW

H Q   

   

 

 

 

Example 1.19  

For the hydraulic system shown in Fig.1.25, the following data are given: 

The pump is adding 4 kW to the fluid (i.e., the hydraulic power of the pump). 

The pump flow is 0.002 m
3
/s. 

The pipe has an inside diameter of 25 mm. 

The specific gravity of oil is 0.9. 

Point 2 is at an elevation of 0.6 m above the oil level, that is, point 1. 

The head loss due to friction in the line between points 1 and 2 is 10. 

Determine the fluid pressure at point 2, the inlet to the hydraulic motor. Neglect the pressure drop at 

the strainer. The oil tank is vented to atmosphere. 

 

 

 
Figure 1.25 

 

 

Solution:Givenp1 = 0 (as the tank is vented to the atmosphere) 

P (kW) = 4 (kW) = 4 × 10
3 
W 

Q = 0.002 m
3
/s 

Dp= 25 mm = 0.025 m  

SG = 0.9  

z2 – z1=     6 m 

HL = 10 m 

Hm = 0 (there is no motor between 1 and 2) 

 

The problem can be solved by using the energy equation (Bernoulli’s equation): 
2 2

1 1 2 2
1 p m L 2

2 2
z

p v p v
H H H z

g g 
         

We can take v1 = 0 since the tank cross-section is large. Let us compute some of the unknown terms 

in the equation. The pump head is given by 

0.6 m Breather Electric motor Pump 

2 

1 

Hydraulic motor 

Strainer 
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3p 3

 (W)

(N/m )  (m /s)

P
H

Q



 

   
34 10

226.7 m
0.9 9800 0.002


 

 
 

The velocity head is  

   
3

2 2
2

 (m /s) 0.002
4.07m/s

 (m )
(0.025 )

4

Q
v

A 
    

The velocity head is  

   
2 2

2 4.07
0.85 m 

2 2 9.81

v

g
 


 

    

Substituting the values into the energy equation and rearranging, we can write 

  

2
1 20 0 266.7 0 10 0.85

p
zz


         

 2
1 2( ) 266.7 10 0.85

p
z z


        6 266.7 10 0.85     

 2 209.85 m
p


   

 2 209.85 0.9 9800 1850877 Pa 1850.9 kPap       

  

Example 1.20  

The oil tank for the hydraulic system shown in Fig.1.26is pressurized at 68 kPa gauge pressure. The 

inlet to the pump is 3 m below the oil level. The pump flow rate is 0.001896 m
3
/s. Find the pressure at 

station 2. The specific gravity of oil is 0.9 and kinematic viscosity of oil is 100 cS. Assume the 

pressure drop across the strainer to be 6.9 kPa. Also given the pipe diameter is 38 mm and the total 

length of the pipe is 6 m. 

 
Figure 1.26 

 

 

Solution: We have p1 = 68 kPa,  z1− z2 = 3 m, Q = 0.001896 m
3
/s, ps= 6.9 kPa, SG = 0.9, Dp= 38 mm, 

v= 100 cS, Lp= 6 m. To calculate p2 . 
By the application of Bernoulli’s (energy) equation, we can write 

      

2 2

1 1 2 2
1 p m L 2

2 2
z

p v p v
H H H z

g g 
         

Electric  

motor 

Breather 

Pump 

3 m 

z2 

z1 

38 mm dia 

pipe  

Total pipe length = 6m  



29 

 

Now 
1 2 3 mzz   , 

m 0H   (because there is no fluid motor between points 1 and 2), 
1 0v   (assuming 

the oil tank area to be large).The velocity at point 2, v2, is  
3

2 2 2

 (m /s) 0.001896
1.67 m / s

 (m ) (0.038 ) / 4

Q
v

A 
    

 

Equivalent velocity head is 
2 2

2 1.67
0.142 m

2 2 9.81

v

g
 


 

The head loss is  

    

2
p

L

p 2

f L v
H

D g


   

Here 

   
p

p

Total length of pipe 6 m 

Diameter of pipe 0.38 m 

L

D

 

 
 

Value of f (friction factor) depends on the value of Reynolds number. 

     
p

6

1.67 0.038
 Re

100 10

634.6 2000, flow is laminar

vD

 


 



 

 

Now 

  
64 64

0.1
Re 634.6

f     

So head loss due to friction is   

   
L

0.1 6
  0.142 2.24 m

0.038
H


    

 

Case 1: Point 2 is before the pump 

 

When point 2 is before the pump, the pump head is zero, that is, p 0.H  Rearranging the energy 

equation to solve for the present head, we can write 
2

2 1 2
1 2 p L( )

2

p p v
z z H H

g 
       

   
68000

  3 0 2.24 0.142 8.33  m
0.9 9800

     


 

 

 
2 8.33 0.9 9800 73470 Pa 73.5 kPap       

 

This valve ofp2 is without considering the pressure drop across the strainer. The pressure drop is 6.9 

kPa across the strainer. Therefore, the pressure at point 2 is  

     
2 actual 73.5 6.9 kPa 66.6 kPap      

Which is less than 1 atmospheric pressure (101 kPa)? 

 

Case 2: Point 2 is after the pump  

When point 2 is after the pump, the pump head must be taken into account 

3p 3

(W)

 (N/m )  (m /s)

P
H

Q



 

 

Now 

   3

waterSG 0.9 9800 N / m      

Also 
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1

3

3

Power   

kN m
68 0.001896 0.13 kW

m s

p Q

P

 

  
    

   

 

So 

   

3

p

3

3

0.13 10 W
7.7 m

N m
0.9 9800 0.001896

m s

H


 
  

    
   

 

 

Rearranging the energy equation to solve for the present head, we can write 
2

2 1 2
1 2 p( )

2

68000
3 7.7 2.24 0.142

0.9 9800

16.028 m

p p v
z z H

g 
    

    




 

 

This valve of p2 is without considering the pressure drop across the strainer. The pressure drop is 6.9 

kPa across the strainer. Therefore, the pressure at point 2 is 

2-actual 2   6.9 kPa 141.4 6 134.5 kPap p      

which isgreater than 1 atmospheric pressure (101 kPa). 
 

 

Example 1.21  

The volume flow rate through the pump shown in Fig.1.27is 7.8 m
3
/s. The fluid being pumped is oil 

with specific gravity 0.86. Calculate the energy delivered by the pump to the oil per unit weight of oil 

flowing in the system. Energy losses in the system are caused by the check valve and friction losses as 

the fluid flows through the piping. The magnitude of such losses has been determined to be 1.86 N 

m/N. 

 
Figure 1.27 

 

 

 

 

Solution: Using the section where pressure gauges are located as the section of interest, write the 

energy equation for the system, including only the necessary terms: 

  =296 kPa 

A 

B 

  =28 kPa 

Hydraulic pump 

75 mm dia pipe 

25 mm pipe 

Flow 

1 m 



31 

 

2 2

A A B B
A Added Removed Losses B

γ 2 2

p v p v
z H H H z

g g
         

or   

2 2

B A B A
Added B A Losses

2

p p v v
H z z H

g

 
      

In this case, the specific gravity of oil is 

   
3

waterγ (SG)( ) (0.86)(9.81) 8.44 kN/mγ    

Since 
B 296 kPap   and 

A 28 kPap    we get 

   

3

B A

2

[296 ( 28)] kN m
38.4 m

m 8.44 kN

p p



  
    

Now 
B A 1mz z   as B is at a higher elevation than A.The volume flow rate and continuity 

equation are used to determine the velocity. Now 

 
A A B BQ Av A v A v    

 

3
3 2

A

A

0.014 m
(4.768 10 )m 2.94 m/s

s

Q
v

A

 
     

 
 

and 

3
3 2

B

B

0.014 m
(2.168 10 )m 6.46 m/s

s

Q
v

A

 
    

 
 

So, 

 

2 2 2 2 2 2

B A

2

(6.46 2.94 ) m / s
1.69 m

9.81 m2
2

s

v v

g

 
 

 
 
 

 

 

Given 
Losses 1.86 mH  . Therefore, 

Added 38.4 m 1.0 m 1.69 m 1.86 m 42.9 m H      or 42.9 N m/N 

That is, the pump delivers 42.9 N m of energy to each newton of oil flowing through it. 

 

Example 1.22  

For the hydraulic system of Fig.1.28, the following data are given:  

1. Pump flow is 0.001896 m
3
/s. 

2. The air pressure at station 1 in the hydraulic tank is 68.97 kPa gauge pressure. 

3. The inlet line to the pump is 3.048 m below the oil level. 

4. The pipe has an inside diameter of 0.0381 m. 

Find the pressure at station 2 if 

(a) There is no head loss between stations 1 and 2. 

(b) There is 7.622 m head loss between stations 1 and 2. 
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Figure 1.28 

 

Solution: We use Bernoulli’s equation 

   
2 2

1 1 2 2
1 p m L 2

2 2
z

p v p v
H H H z

g g 
         

 

Case (a): There is no head loss between stations 1 and 2 

 

Here 
1 2 L 13.0489 m,   0, z z H p    =68.97 kPa. Now 

 

    2
2

Flow  0.001896 
1.66 m/s

Area
(0.0381 )

4

v


    

Since there is no pump between 1 and 2, p 0.H   

 Since there is no motor between 1 and 2, m 0.H   

Assume v1 = 0 (assuming that area of cross-section is large). 

Simplification gives for no head loss, 

   

2

1 2 2
2 1 

2

p p v
z z

g g g 
     

Assuming 38817 N/mg   we get 

 

 

2 2

2
1 23 2

68970 N/m (1.66m/s)
0 0 0 0  

8817 N/m 2 9.81m/s

p
z z

g
       


 

Knowing that 
1 2 3.048 mz z   we get 

 

2

2 68970 (1.66)
3.048  3.048 7.82 0.142 10.73 m

8817 2 9.81

p

g
      


 

 

  
3

2 10.73 (m) 8817 (N/m ) 94610 Pa

94.6 kPa

p   


 

Pump 

3.048 m 

2 

1 

0.0381 m (ID) 
Breather 
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Case (b): There is 7.622 m head loss between stations 1 and 2 

 

 2 10.73 m 7.622 3.11m
p

g
    

So 

 
3

2 3.11(m) 8817 (N/m ) 27400 Pa

27.4 kPa

p   

  

 

Example 1.23 

For the pump in Fig.1.29, Qout =0.00190 m
3
/s of oil having a specific gravity of 0.9. What is Qin? Find 

the pressure difference between A and B if 

(a) The pump is turned OFF. 
(b) The input power to the pump is 1494 W. 

 
Figure 1.29 

 

Solution: 

(a) The pump is turned OFF: 

 

As per Bernoulli’s equation, 
B A 0p p   

 

(b) The input power to the pump is 1494 W 

 

We use Bernoulli’s equation: 

 

   

2 2

A A B B
A p m L B 

2 2

p v p v
z H H H z

g g g g 
         

Here 

   

p 3 3

Pump power (W)
 

(N/m ) (m /s)

1494
89.2 m

0.9 9800 0.00190

H
Q




 
 

 

 

 A
2

Flow  0.00190
  0.937 m/s

Area
(0. )0508

4

v


    

 

A 

B 

Qout 

0.0254 m dia pipe 

Qin 

0.0508 m dia pipe 

Pump 
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B

2

Flow  0.00190
3.75 m/s

Area
(0.0254 )

4

 v


    

Substituting values, we have 

 

 

2 2

A B B A
p

2 2

  ( ) ( )
 

2

(3.75 0.937 )
89.2

2 9.81

88.5 m

p p v v
H

g

 
 


 





 

So  

  

3

B 88.5 (m) 9800(N/m ) 0.9

781000 Pa

781 kPa

p   




 

 

1.10 Torricelli’s Theorem 

 

Torricelli’s theorem is Bernoulli’s equation with certain assumptions made. Torricelli’s theorem states 

that the velocity of the water jet of liquid is directly proportional to the square root of the head of the 

liquid producing it. This deals with the setup where there is a large tank with a narrow opening 

allowing the liquid to flow out (Fig. 1.30). Both the tank and the narrow opening (nozzle) are open to 

the atmosphere: 

 

2 2

1 1 2 2

1 p m L 2
2 2

z
p v p v

H H H z
g g 

       

 
 

 
 

Figure 1.30Tank with a narrow opening (nozzle) 

 

In this setup, certain assumptions are made: 

 

 

h 

2 

1 
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1. Pressure is the same because the tank and the nozzle are open to the atmosphere, that 

is,     . 

2. Also, let 2 1 .z z h   

3. The fluid velocity of the tank (water level) is very much slower than the fluid velocity of the nozzle 

as the area of the liquid surface is much larger than that of the cross section of nozzle, that is,
2 1.v v  

4. There is no pump or motor, that is, p m 0.H H   

5. There are no frictional losses, that is,
L 0.H   

Keeping all these assumptions in mind, Bernoulli’s equation gets reduced to 

   2 2v gh  

 

wherev2 is the jet velocity (m/s), g is the acceleration due to gravity (m/s
2
) and h is the pressure head 

(m). Now if we do not consider an ideal fluid, then the friction head will be present (HL). In that case 

   2 L2 ( )v g h H   

This shows that the velocity of jet decreases if the friction losses are taken into account. 

1.11 Siphon 

 
Figure 1.31The siphon principle 

 

A siphon is a familiar hydraulic device (Fig. 1.31). It is commonly used to cause a liquid to flow from 

one container in an upward direction over an obstacle to a second lower container in a downward 

direction. As shown in Fig. 1.31, a siphon consists of a U-tube with one end submerged below the 

level of the liquid surface, and the free end lying below it on the outside of the container. For the fluid 

to flow out of the free end, two conditions must be met: 

 

1. The elevation of the free end must be lower than the elevation of the liquid surface inside the 

container. 

2. The fluid must initially be forced to flow up from the container into the center portion of the 

U-tube. This is normally done by temporarily providing a suction pressure at the free end of 

the siphon. For example, when siphoning gasoline from an automobile gas tank, a person can 

develop this suction by momentarily sucking the free end of the hose. This allows 

atmospheric pressure in the tank to push the gasoline up the U-tube hose, as required. For 

continuous flow operation, the free end of the U-tube hose must lie below the gasoline level 

in the tank. 

 

U tube 

1 

Z

2 

Z

1 

h 

Zero elevation reference 

2 
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We can analyze the flow through a siphon by applying the energy equation between points 1 and 2 as 

shown in Fig. 1.31: 

   
2 2

1 1 2 2

1 p m L 2
2 2

p v p v
z H H H z

g g 
         

 

The following conditions apply for a siphon: 

 

1.   =   = atmospheric pressure. 

2. The area of the surface of the liquid in the container is large so that the velocity   equals 

essentially 0. 

Example 1.24 

For the siphon system shown in Fig.1.32, the following data are given:z1= 4 m, z2 = 0.2 m, HL = 0.5 m. 

If the inside diameter of the siphon pipe is 30 mm, determine the velocity of the fluid and the flow 

rate (in LPM) through the siphon. Apply the energy equation and solve the problem. 

 

 
Figure 1.32 

 

 

Solution: Given z1 =4 m,z2= 0.2 m, HL = 0.5m, D = 30 mm = 30×10
3 

m. To calculate v2 and Q2.This 

problem can be solved by using the energy equation (modified Bernoulli’s theorem) to points (1) and 

(2) as below: 

 

 

2 2

1 1 2 2
1 p m L 2

2 2

p v p v
z H H H z

g g 
         

wherep1 = p2 = 0 (atmospheric pressure), v1 = 0 (as the tank is quite large, the velocity is negligible), 

Hp = 0 (no pump), Hm=0 (no motor), z1 − z2 = h (the head). Substituting these values in the above 

equation we obtain  

  

2

2
L0 0 0 0 0

2

v
h H

g
        

  
2

2
L

2

v
h H

g
    

  
2

2 L2 ( )v g h H    

 
2 L2 ( )v g h H    2 9.81(3.8 0.5) 8.05 m/s     

         

       

U tube 

1 

  

Zero elevation reference 

2 
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 The flow rate is given by  

 
2 2 2Q A v

3 2(30 10 ) 8.05
4

     

 
3 3

2 5.7 10 m /sQ     

 
3 3

2 5.7 10 10 60Q       

 
2 342 LPMQ 

 

 

Example 1.25 

A siphon is made of a pipe whose inside diameter is 25.4 mm and is used to maintain a constant level 

in a 6.0975 m deep tank (Fig. 1.33). If the siphon discharge is 9.144 m below the top of tank, what 

will be the flow rate if the fluid level is 1.524 m below the top of tank? 

 
Figure 1.33 

 

 

Solution: From Fig.1.33, h = (9.144−1.524) = 7.62 m. From the previous problem, we can write using 

the modified Bernoulli’s theorem 

   
2

2 2v gh  

2 2   v gh  = 2 9.81 7.62   = 12.2 m/s 

Now 

2

2 2

3

  12.2  0.0254
4

0.00618 m /s  6.18 LPS

Q v A
 

    
 

 
 

 

 

 

 

 

 

 

 

2 

U tube 

1 
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Objective-Type Questions 

Fill in the Blanks  

 

1. Pascal’s law states that the pressure exerted on a _______ is transmitted undiminished in _______ 

and acts with equal force on equal areas and at _______to the surface of the container. 

2. The total energy includes potential energy due to elevation and pressure and also _______.  

3. The _______ energy of a particle of a fluid depends on its elevation above any arbitrary plane. 

4. Pressure energy is possessed by the fluid per unit _______ of fluid virtue of the pressure under 

which the fluid exists.  

5. Torricelli’s theorem states that the velocity of the water jet of liquid is _______ proportional to the 

_______ of the head of the liquid producing it. 

 

State True or False 

 

1. Continuity equation states that the weight flow rate is the same for all cross sections of a pipe.  

2. Hydraulic power is equal to the product of pressure and volume flow rate. 

3. A pump converts mechanical energy into hydraulic energy by increasing the fluid flow. 

4. It is easy to achieve overload protection using hydraulic systems.  

5. 
Flow (LPM)×Pressure (bar)

Hydraulic power in kW   .
320

  
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Review Questions 

 

1. Define hydraulic power. Derive an expression for hydraulic power if the flow is in LPS and 

pressure in kPa.    

2. How will you explain Pascal’s law with reference to working of a hydraulic cylinder? 

3. State Bernoulli’s theorem.    

4. What is a continuity equation and what are its implications relative to fluid power? 

5. What is the significance of each term in the energy equation? 

6. Define pressure head, elevation head and kinetic head. 

7. State Torricelli’s theorem and mention its significance. 

8. Explain how a siphon operates. 

9. State Pascal’s law. 

10. Explain the meaning of Bernoulli’s equation and how it affects the flow of a fluid in a hydraulic 

circuit. 

11. Relative to power, there is an analogy among mechanical, electrical and hydraulic systems. 

Describe this analogy. 

 

12. What is the significance of each term in the energy equation? 

13. State the basic principle laws and equations of hydraulics. 
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Answers 

Fill in the Blanks 

 

1. Confined fluid, all directions,right angles 

2. Kinetic energy due to velocity 

3. Potential 

4. Weight 

5. Directly, square root 

State True or False 

1. True 

2. True 

3. False 

4. True 

5. False 

 


